User:Waffeln/sandbox

From Wikipedia, the free encyclopedia


O-linked glycosylation is the attachment of a sugar molecule to the oxygen atom of either serine (Ser) or threonine (Thr) amino acids in a protein destined for secretion from the cell. O-glycosylation is studied in biochemistry, and occurs in the Golgi apparatus after the protein has been produced, as a post-translational modification [1]. Several different sugars can be added to the amino acid residues, and affect the protein in different ways by changing protein stability and regulating protein activity. O-glycans have numerous functions throughout the body, including trafficking of cells in the immune system, allowing recognition of foreign organs, controlling cell metabolism and providing cartilage and tendon flexibility [2]. Because of this variety of functions, changes in O-glycosylation are important in many diseases including cancer, diabetes and Alzheimer's. O-glycosylation occurs in eukaryotes, archaea and a number of pathogenic bacteria including Burkholderia cenocepacia [3], Neisseria gonorrhoeae [4] and Acinetobacter baumannii [5].

Common Types of O-Glycosylation[edit]

O-N-acetylgalactosamine (O-GalNAc)[edit]

Core 1 and Core 2 structures, commonly found in O-GalNAc glycosylation. Core 1 is formed by the addition of a galactose onto the O-linked GalNAc sugar. Core 2 is formed by the addition of N-acetylglucosamine (GlcNAc) to the O-linked GalNAc sugar. Poly-N-acetyllactosamine structures are formed by the addition of N-acetyllactosamine units, consisting of alternating GlcNAc and galactose sugars. Structures are attached to serine or threonine residues in the protein through the GalNAc sugar.

Addition of N-acetylgalactosamine (GalNAc) to a serine or threonine occurs in the Golgi apparatus, after the protein has been folded [1] [6]. The process is catalysed by GalNAc transferases (GALNTs), of which there are 20 different types [6]. This initial structure can be modified by the addition of other sugars, or other compounds such as methyl and acetyl groups [1]. These modifications produce 8 core structures known to date [2]. Different cells have different enzymes that can add further sugars, known as glycosyltransferases, and structures therefore change from cell to cell [6]. Common sugars added include galactose, N-acetylglucosamine, fucose and sialic acid. These sugars can also be modified by the addition of sulfates or acetyl groups.

The H-Antigen formed by the addition of fucose to a Core 2 structure can be modified further to form A- and B-antigens. Addition of N-acetylgalactosamine (GalNAc) forms the A-antigen, present in individuals with blood group A. By adding a galactose (Gal), the B-antigen is formed, present in individuals with blood group B.

Biosynthesis[edit]

GalNAc is added onto a serine or threonine residue from a precursor molecule, through the activity of a GalNAc transferase enzyme [1]. The specific residue onto which it will be attached is not defined, because there are numerous enzymes that can catalyse this reaction and each one will favour different residues [7]. However, there are often proline (Pro) residues near the threonine or serine residue [6].

Once this initial sugar has been added, other glycosyltransferases can catalyse the addition of additional sugars. Two of the most common structures formed are Core 1 and Core 2. Core 1 is formed by the addition of a galactose sugar onto the initial GalNAc. Core 2 consists of a Core 1 structure with an additional N-acetylglucosamine (GlcNAc) sugar [6]. A poly-N-acetyllactosamine structure can be formed by the alternating addition of GlcNAc and galactose sugars onto the GalNAc sugar [6].

Terminal sugars on O-glycans are important in recognition by lectins and play a key role in the immune system. Addition of fucose sugars by fucosyltransferases forms Lewis epitopes and the scaffold for blood group determinants. Addition of a fucose alone creates the H antigen, present in people with blood type O [6]. By adding a galactose onto this structure, the B antigen of blood group B is created. Alternatively, adding a GalNAc sugar will create the A antigen for blood group A.

Functions[edit]

P-Selectin Glycoprotein Ligand 1 (PSGL-1) has several O-glycans in the region near the membrane, in order to rigidify the structure and extend the ligand away from the cell surface. An sLex epitope allows interactions with the receptor for leukocyte localisation to specific cells.

O-GalNAc sugars are important in a variety of processes, including leukocyte circulation, fertilisation, and protection against invading microbes [1] [2].

O-GalNAc modifications are common on membrane glycoproteins, where they help increase rigidity of the region close to the membrane so that the protein extends away from the surface [6] For example, the globular domain of the low-density lipoprotein receptor (LDL) is projected from the cell surface by a region rigidified by O-glycans [2].

In order for leukocytes of the immune system to move into infected cells, they have to interact with these cells through receptors. They express ligands on their cell surface to allow this interaction to occur [1]. P-Selectin Glycoprotein Ligand-1 (PSGL-1) is such a ligand, and contains a lot of O-glycans that are necessary for its function. O-glycans near the membrane maintain the elongated structure and a terminal sLex epitope is necessary for interactions with the receptor [8].

Mucins are a group of heavily O-glycosylated proteins that line the gastrointestinal and respiratory tracts to protect these regions from infection [6]. Mucins are negatively charged, which allows them to interact with water and prevent it from evaporating. This is important in their protective function as it lubricates the tracts so bacteria cannot bind strongly. Changes in mucins are important in numerous diseases, including cancer and inflammatory bowel disease. Absence of O-glycans on mucin proteins changes their 3D shape dramatically and often prevents correct function [1] [9].

O-N-acetylglucosamine (O-GlcNAc)[edit]

Addition of N-acetylglucosamine (O-GlcNAc) to serine and threonine residues usually occurs on cytosplamic and nuclear proteins, contrary to O-GalNAc modifications which occur on proteins that will be secreted [10]. The modification was only recently discovered, but the number proteins with it is increasing rapidly [7]. It is conserved throughout eukaryotes and is the first example of glycosylation that does not occur on secretory proteins.

O-GlcNAc glycosylation is dynamic, as addition and removal of the sugar to the protein cycle continously. O-GlcNAc is added to the protein by O-GlcNAc transferase and is removed by O-GlcNAcase.

O-GlcNAcylation differs from other O-glycosylation processes in that the core structure is not generally modified further, and the sugar can be attached or removed from a protein several times [6] [7]. This addition and removal occurs in rapid cycles and is catalysed by two very specific enzymes. O-GlcNAc is added by a O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA). Because there are only two enzymes that affect this specific modification, they are very tightly regulated and depend on a lot of other factors [11].

Because O-GlcNAc can be added and removed, it is known as a dynamic modification and has a lot of similarities to phosphorylation. O-GlcNAcylation and phosphorylation can occur on the same threonine and serine residues, suggesting a complex relationship between these modifications that can affect many functions of the cell [6] [12]. The modification affects processes like the cells response to cellular stress, the cell cycle, protein stability and protein turnover. It may be implicated in neurodegenerative diseases like Parkinson’s and late-onset Alzheimer’s [1] [12] and has been found to play a role in non-insulin dependent diabetes [13].

Additionally, O-GlcNAcylation can enhance the Warburg Effect, which is defined as the change that occurs in the metabolism of cancer cells to favour their growth [6] [14]. Because both O-GlcNAcylation and phosphorylation can affect specific residues and therefore both have important functions in regulating signalling pathways, both of these processes provide interesting targets for cancer research.

O-Mannose (O-Man)[edit]

O-Mannose attached to serine and threonine residues on α-dystroglycan is commonly extended with N-acetylglucosamine, galactose and sialic acid sugars to separate the two domains of the protein. This can be further modified with Ribitol-P, xylose and glucuronic acid in order to form a structure that can stabilise the interaction to the basement membrane.

O-mannosylation involves the transfer of a mannose from a dolichol-p-mannose donor molecule onto the serine or threonine residue of a protein [15]. Most other O-glycosylation processes use a sugar nucleotide as a donor molecule [7]. A further difference to other glycosylations is that the process is initiated in the endoplasmic reticulum, rather than the Golgi [1]. However, further chain elongation occurs in the Golgi [15].

Until recently, it was believed that the process is restricted to fungi, however it is conserved across eukaryotes, prokaryotes and archaea [16]. Yeast and fungi cell wall proteins are highly mannosylated, while human proteins containing O-man are often elongated with other sugars. The best characterised O-mannosylated human protein is α-dystroglycan [15]. O-man sugars separate two domains of the protein, required to connect the extracellular basement membrane and intracellular cytoskeleton to anchor the cell in position [17]. Ribitol, xylose and glucuronic acid can be added to this structure in a complex modification that forms an extended chain [8]. This is required to stabilise the interaction between α-dystroglycan and the extracellular basement membrane. Without these modifications, the glycoprotein cannot anchor the cell which leads to congenital muscular dystrophy (CMD), characterised by severe brain malformations [15].

O-Galactose (O-Gal)[edit]

O-galactose is commonly found on lysine residues in collagen, which are often hydroxylated to form hydroxylysine and can then be modified by O-glycosylation. Addition of a galactose to the hydroxyl group is initiated in the endoplasmic reticulum, but occurs predominantly in the Golgi apparatus and only on hydroxylysine residues in a specific sequence [1] [18].

While this O-galactosylation is necessary for correct function in all collagens, it is especially common in collagen types IV and V [19]. In some cases, a glucose sugar can be added to the core galactose [7].

Proline is also often hydroxylated in collagen, however no glycosylation occurs here as the hydroxyprolines are required for hydrogen bonding within the collagen structure instead.

O-Fucose (O-Fuc)[edit]

Addition of fucose sugars to serine and threonine residues is an unusual form of O-glycosylation that occurs in the endoplasmic reticulum and is catalysed by two fucosyltransferases [20]. These were discovered in Plasmodium falciparum [21] and Toxoplasma gondii [22].

Several different enzymes catalyse the elongation of the core fucose, meaning that different sugars can be added to the initial fucose on the protein [20]. Along with O-glucosylation, O-fucosylation is primarily found on epidermal growth factor (EGF) domains [7]. O-fucosylation on EGF domains occurs between the second and third conserved cysteine residues in the protein sequence [1]. Once the core O-fucose has been added, it is often elongated by addition of GlcNAc, galactose and sialic acid.

Notch is an important protein in development, containing several EGF domains that are O-fucosylated [23]. Changes in the elaboration of the core fucose determine what interactions the protein can form, and therefore which genes will be transcribed during development. O-fucosylation might also play a role in glycoprotein breakdown in the liver [1].

O-Glucose (O-Glc)[edit]

Similarly to O-fucosylation, O-glucosylation is an unusual O-linked modification as it occurs in the endoplasmic reticulum, catalysed by O-glucosyltransferases and also requires a defined sequence in order to be added to the protein. O-glucose is attached to serine residues between the first and second conserved cysteine residues of the EGF domain, for example in clotting factors VII and IX [7]. Additionally, O-glucosylation appears to be necessary for the proper folding of EGF domains in the Notch protein [24].

Proteoglycans[edit]

Heparan sulphate is formed by the addition of a xylose sugar onto the serine residue of a protein. The structure is extended with several N-acetyllactosamine repeating sugar units. Keratan sulphate is formed by the addition of a GalNAc sugar onto the threonine or serine residue of a protein. The structure is extended with two galactose sugars, followed by repeating units of glucuronic acid (GlcA) and GlcNAc.

Proteoglycans consist of a protein core with one or more sugar side chains, known as glycosaminoglycans (GAGs), attached to the oxygen of serine and threonine residues [25]. GAGs consist of long chains of repeating sugar units. Proteoglycans are usually found on the cell surface and in the extracellular matrix (ECM), and are important for the strength and flexibility of cartilage and tendons. Absence of proteoglycans is associated with heart and respiratory failure, defects in skeletal development and increased tumor metastasis [25].

Different types of proteoglycans exist, depending on the sugar that is linked to the oxygen atom of the residue in the protein. For example, the GAG heparan sulphate is attached to a protein serine residue through a xylose sugar [7]. This process is unusual and requires specific xylosyltransferases [6]. Keratan sulphate attaches to a serine or threonine residue through GalNAc, and Type II keratan sulphate is especially common in cartilage [25].

Lipids[edit]

Structure of the ceramide lipid, as well as the attachment of galactose and glucose to form galactosylceramide and glucosylceramide respectively.

Galactose or glucose sugars can be attached to a hydroxyl group of ceramide lipids in a different form of O-glycosylation that does not occur on proteins [6]. This forms glycosphingolipids, which are important for the localisation of receptors in membranes [8]. Incorrect breakdown of these lipids leads to a group of diseases known as sphingolipidoses, which are often characterised by neurodegeneration and developmental disabilities.

Because both galactose and glucose sugars can be added to the ceramide core, we have two groups of glycosphingolipids. Galactosphingolipids are generally very simple in structure and the core galactose is not usually modified. Glucosphingolipids, however, are often modified and can become a lot more complex.

Biosynthesis of galacto- and glucosphingolipids occurs differently [6]. Glucose is added onto ceramide from its precursor in the endoplasmic reticulum, before additional modifications occur in the Golgi apparatus [8]. Galactose, on the other hand, is added to ceramide already in the Golgi apparatus, where they are then often sulfated by addition of sulfate groups [6].

Glycogenin[edit]

One of the first and only examples of O-glycosylation on tyrosine, rather than on serine or threonine residues, is the addition of glucose to a tyrosine residue in glycogenin [7]. Glycogenin is a glycosyltransferase that initiates the conversion of glucose to glycogen, present in muscle and liver cells [26].

Clinical significance[edit]

All forms of O-glycosylation are abundant throughout the body and play important roles in many cellular functions.

Lewis epitopes are important in determining blood groups, and allow the generation of an immune response if we detect foreign organs. Understanding them is important in organ transplants [1].

Hinge regions of immunoglobulins IgD and IgA1 contain highly O-glycosylated regions between individual domains to maintain their structure, allow interactions with foreign antigens and protect the region from proteolytic cleavage [1] [8].

Alzheimer’s may be affected by O-glycosylation. Tau, the protein that accumulates to cause neurodegeneration in Alzheimer’s, contains O-GlcNAc modifcations which may be implicated in disease progression [1].

Changes in O-glycosylation are extremely common in cancer. O-glycan structures, and especially the terminal Lewis epitopes, are important in allowing tumor cells to invade new tissues during metastasis [6]. Understanding these changes in O-glycosylation of cancer cells can lead to new diagnostic approaches and therapeutic opportunities [1].

See also[edit]

References[edit]

  1. ^ a b c d e f g h i j k l m n o p Van den Steen, Philippe; M. Rudd, Pauline; A. Dwek, Raymond; Opdenakker, Ghislain (1998). "Concepts and Principles of O-Linked Glycosylation". Critical Reviews in Biochemistry and Molecular Biology. 33 (3): 151–208. doi:10.1080/10409239891204198.
  2. ^ a b c d F. Hounsell, Elizabeth; J. Davies, Michael; V. Renouf, David (1995). "O-linked protein glycosylation structure and function". Glycoconjugate Journal. 13: 19–26.
  3. ^ Lithgow, Karen V.; Scott, Nichollas E.; Iwashkiw, Jeremy A.; Thomson, Euan L. S.; Foster, Leonard J.; Feldman, Mario F.; Dennis, Jonathan J. (April 2014). "A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence". Molecular Microbiology. 92 (1): 116–137. doi:10.1111/mmi.12540. ISSN 1365-2958. PMID 24673753.
  4. ^ Vik, Ashild; Aas, Finn Erik; Anonsen, Jan Haug; Bilsborough, Shaun; Schneider, Andrea; Egge-Jacobsen, Wolfgang; Koomey, Michael (2009-03-17). "Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae". Proceedings of the National Academy of Sciences of the United States of America. 106 (11): 4447–4452. Bibcode:2009PNAS..106.4447V. doi:10.1073/pnas.0809504106. ISSN 1091-6490. PMC 2648892. PMID 19251655.
  5. ^ Iwashkiw, Jeremy A.; Seper, Andrea; Weber, Brent S.; Scott, Nichollas E.; Vinogradov, Evgeny; Stratilo, Chad; Reiz, Bela; Cordwell, Stuart J.; Whittal, Randy (2012). "Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation". PLoS Pathogens. 8 (6): e1002758. doi:10.1371/journal.ppat.1002758. ISSN 1553-7374. PMC 3369928. PMID 22685409.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  6. ^ a b c d e f g h i j k l m n o p q Varki, Ajit (2015). Essentials of glycobiology (3rd Edition ed.). Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. ISBN 9781621821328. {{cite book}}: |edition= has extra text (help)
  7. ^ a b c d e f g h i G. Spiro, Robert (2002). "Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds". Glycobiology. 12 (4): 43R–56R. doi:10.1093/glycob/12.4.43R.
  8. ^ a b c d e E. Taylor, Mauren; Drickamer, Kurt (2011). Introduction to Glycobiology (3rd Edition ed.). New York: Oxford University Press Inc. ISBN 978-0-19-956911-3. {{cite book}}: |edition= has extra text (help)
  9. ^ Varki, Ajit (1999). Essentials of Glycobiology. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
  10. ^ Yang, Xiaoyong; Qian, Kevin (2017). "Protein O-GlcNAcylation: emerging mechanisms and functions". Nature Reviews Molecular Cell Biology. 18: 452–465. doi:10.1038/nrm.2017.22.
  11. ^ B. Lazarus, Michael; Jiang, Jiaoyang; Kapuria, Vaibhav; Bhuiyan, Tanja; Janetzko, John; F. Zandberg, Wesley; J. Vocadlo, David; Herr, Winship; Walker, Suzanne (2013). "HCF-1 is LCeaved in the Active Site of O-GlcNAc Transferase". Science. 342 (6163): 1235–1239. doi:10.1126/science.1243990.
  12. ^ a b W. Hart, Gerald; Slawson, Chad; Ramirez-Correa, Genaro; Lagerlof, Olof (2011). "Cross Talk Between O-GlcNAcylation and Phosphorylation: Roles in Signaling, Transcription and Chronic Disease". Annual Review of Biochemistry. 80 (1): 825–858. doi:10.1146/annurev-biochem-060608-102511.
  13. ^ Ma, Junfeng; W. Hart, Gerald (2014). "Protein O-GlcNAcylation in diabetes and diabetic complications". Expert Review of Proteomics. 10 (4): 365-380. doi:10.1586/14789450.2013.820536.
  14. ^ Muniz de Quieroz, Rafaela; Carvalho, Erika; Barbosa Dias, Wagner (2014). "O-GlcNAcylation: the sweet side of the cancer". Frontiers in Oncology. 4: 132. doi:10.3389/fonc.2014.00132.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. ^ a b c d Lommel M, Strahl S (August 2009). "Protein O-mannosylation: conserved from bacteria to humans". Glycobiology. 19 (8): 816–28. doi:10.1093/glycob/cwp066. PMID 19429925. Cite error: The named reference "Strahl 2009" was defined multiple times with different content (see the help page).
  16. ^ Strahl-Bolsinger, Sabine; Gentzsch, Martina; Tanner, Widmar (1999). "Protein O-mannosylation". biochimica et Biophysica Acta. 1426 (2): 297–307. doi:10.1016/S0304-4165(98)00131-7.
  17. ^ Inamori, Kei-ichiro; Yoshida-Moriguchi, Takako; Hara, Yuji; E. Anderson, Mary; Yu, Liping; P. Campbell, Kevin (2012). "Dystroglycan Function Requires Xylosyl- and Glucuronyltransferase Activities of LARGE". Science. 335 (6064): 93–96. doi:10.1126/science.1214115.
  18. ^ Harwood R, Grant ME, Jackson DS (1975). "Studies on the glycosylation of hydroxylysine residues during collagen biosynthesis and the subcellular localization of collagen galactosyltransferase and collagen glucosyltransferase in tendon and cartilage cells". The Biochemical Journal. 152 (2): 291–302. doi:10.1042/bj1520291. PMC 1172471. PMID 1220686.
  19. ^ J. Jurgensen, Henrik; H. Madsen, Daniel; Ingvarsen, Signe; C. Melander, Maria; Gardsvoll, Henrik; Patthy, Laszlo; H. Engelholm, Lars; Behrendt, Niels (2011). "A Novel Functional Role of Collagen Glycosylation". Journal of Biological Chemistry. 286: 32736–32748. doi:10.1074/jbc.M111.266692.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  20. ^ a b J. Moloney, Daniel; I. Lin, Angy; S. Haltiwanger, Robert (1997). "The O-linked Fucose Glycosylation Pathway". Journal of Biological Chemistry. 272: 19046–19050. doi:10.1074/jbc.272.30.19046.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Lopaticki, S; Yang, ASP; John, A; Scott, NE; Lingford, JP; O'Neill, MT; Erickson, SM; McKenzie, NC; Jennison, C; Whitehead, LW; Douglas, DN; Kneteman, NM; Goddard-Borger, ED; Boddey, JA (15 September 2017). "Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts". Nature Communications. 8 (1): 561. Bibcode:2017NatCo...8..561L. doi:10.1038/s41467-017-00571-y. PMC 5601480. PMID 28916755.
  22. ^ Khurana, Sachin; Coffey, Michael J.; John, Alan; Uboldi, Alessandro D.; Huynh, My-Hang; Stewart, Rebecca J.; Carruthers, Vern; Tonkin, Christopher J.; Goddard-Borger, Ethan D. (2018-12-04). "Protein O-fucosyltransferase 2-mediated O-glycosylation of the adhesin MIC2 is dispensable for Toxoplasma gondii tachyzoite infection". The Journal of Biological Chemistry: jbc.RA118.005357. doi:10.1074/jbc.RA118.005357. ISSN 1083-351X. PMID 30514763.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ A. Rana, Nadia; S. Haltiwanger, Robert (2011). "Fringe Benefits: Functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors". Current Opinion in Structural Biology. 21 (5): 583–589. doi:10.1016/j.sbi.2011.08.008.
  24. ^ Takeuchi, Hideyuki; Kantharia, Joshua; K. Sethi, Maya; Bakker, Hans; S. Haltiwanger, Robert (2012). "Site-specific O-Glucosylation of the Epidermal Growth Factor-like (EGF) Repeats of NOtch". Journal of Biological Chemistry. 287: 33934–33944. doi:10.1074/jbc.M112.401315.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  25. ^ a b c H. Pomin, Vitor; Mulloy, Barbara (2018). "Glucosaminoglycans and Proteoglycans". Pharmaceuticals. 11 (1): 17. doi:10.3390/ph11010027.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  26. ^ Litwack, Gerald (2017). Human Biochemistry. Academic Press. pp. 161–181. ISBN 978-0-12-383864-3.

External links[edit]

  • GlycoEP : In silico Platform for Prediction of N-, O- and C-Glycosites in Eukaryotic Protein Sequences

Category:Posttranslational modification