User:IONTRANSP

From Wikipedia, the free encyclopedia

I'm interested in ion transport.

Chloride channel[edit]

Sodium–hydrogen antiporter 3[edit]

Voltage-gated proton channel[edit]

voltage-sensor containing phosphatase[edit]

References[edit]

{{Cite journal | last1 = Feske | first1 = S. | title = CRAC channelopathies | doi = 10.1007/s00424-009-0777-5 | journal = Pflügers Archiv - European Journal of Physiology | volume = 460 | issue = 2 | pages = 417–435 | year = 2010 | pmid = 20111871 | pmc =2885504 }}Feske, S. (2010). "CRAC channelopathies". Pflügers Archiv - European Journal of Physiology. 460 (2): 417–435. doi:10.1007/s00424-009-0777-5. PMC 2885504. PMID 20111871.

Parkinson disease[edit]

LRRK2 G2019S accounts for parkinsonism in several families[1]

There is a functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1)[2]

Unlike other known genetic causes of parkinsonism, G2019S LRRK2 mutation causes late onset disease[3]

G2019S LRRK2 mutation is associated with Lewy body formation which is also characteristic of most cases of Parkinson disease[4]

PARK8-causing mutations in LRRK2. Some of the first identified individuals with these mutation were of Basque descent so the protein was called "dardarin" after the Basque word ("dardara") for "tremor".[5]

COR domain mutation analysis for LRRK2.[6]

LRRK2 dimerization [7]

References[edit]

  1. ^ Kachergus, J.; Mata, I. F.; Hulihan, M.; Taylor, J. P.; Lincoln, S.; Aasly, J.; Gibson, J. M.; Ross, O. A.; Lynch, T.; Wiley, J.; Payami, H.; Nutt, J.; Maraganore, D. M.; Czyzewski, K.; Styczynska, M.; Wszolek, Z. K.; Farrer, M. J.; Toft, M. (2005). "Identification of a Novel LRRK2 Mutation Linked to Autosomal Dominant Parkinsonism: Evidence of a Common Founder across European Populations". The American Journal of Human Genetics. 76 (4): 672–680. doi:10.1086/429256. PMC 1199304. PMID 15726496.
  2. ^ Stafa, K.; Trancikova, A.; Webber, P. J.; Glauser, L.; West, A. B.; Moore, D. J. (2012). Orr, Harry T (ed.). "GTPase Activity and Neuronal Toxicity of Parkinson's Disease–Associated LRRK2 is Regulated by ArfGAP1". PLoS Genetics. 8 (2): e1002526. doi:10.1371/journal.pgen.1002526. PMC 3280333. PMID 22363216.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ Kett, L. R.; Dauer, W. T. (2012). "Leucine-rich repeat kinase 2 for beginners: Six key questions". Cold Spring Harbor perspectives in medicine. 2 (3): a009407. doi:10.1101/cshperspect.a009407. PMC 3282500. PMID 22393539.
  4. ^ Cookson, M. R.; Hardy, J.; Lewis, P. A. (2008). "Genetic neuropathology of Parkinson's disease". International journal of clinical and experimental pathology. 1 (3): 217–231. PMC 2480564. PMID 18784814.
  5. ^ Paisán-Ruı́z, C.; Jain, S.; Evans, E. W.; Gilks, W. P.; Simón, J.; Van Der Brug, M.; López De Munain, A. L. P.; Aparicio, S.; Gil, A. M. ́N.; Khan, N.; Johnson, J.; Martinez, J. R.; Nicholl, D.; Carrera, I. M.; Pena, A. S. N.; De Silva, R.; Lees, A.; Martí-Massó, J. F. L.; Pérez-Tur, J.; Wood, N. W.; Singleton, A. B. (2004). "Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease". Neuron. 44 (4): 595–600. doi:10.1016/j.neuron.2004.10.023. PMID 15541308.
  6. ^ Daniëls, V.; Vancraenenbroeck, R. E.; Law, B. M. H.; Greggio, E.; Lobbestael, E.; Gao, F.; De Maeyer, M.; Cookson, M. R.; Harvey, K.; Baekelandt, V.; Taymans, J. M. (2011). "Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant". Journal of Neurochemistry. 116 (2): 304–315. doi:10.1111/j.1471-4159.2010.07105.x. PMC 3005098. PMID 21073465.
  7. ^ Civiero, L.; Vancraenenbroeck, R. E.; Belluzzi, E.; Beilina, A.; Lobbestael, E.; Reyniers, L.; Gao, F.; Micetic, I.; De Maeyer, M.; Bubacco, L.; Baekelandt, V.; Cookson, M. R.; Greggio, E.; Taymans, J. M. (2012). Yue, Zhenyu (ed.). "Biochemical Characterization of Highly Purified Leucine-Rich Repeat Kinases 1 and 2 Demonstrates Formation of Homodimers". PLoS ONE. 7 (8): e43472. doi:10.1371/journal.pone.0043472. PMC 3430690. PMID 22952686.{{cite journal}}: CS1 maint: unflagged free DOI (link)

Databases[edit]

Images[edit]

The succinate dehydrogenase complex showing several cofactors, including flavin, iron-sulfur centers, and heme.
Tubuloglomerular feedback