User:ContributingCamel/Sphingomonas

From Wikipedia, the free encyclopedia
Bacteria plays a pivotal role in the microbial ecosystem of wine, further contributing to its quality and flavor. This image depicts musty home-made wine and the bacterium tartarophtorum, bacillus sporogenes and bacterium manitopoeum developed in a stainless steel container.

User:ContributingCamel/Sphingomonas[edit]

Lead:[edit]

Sphingomonas was defined in 1990 as a group of Gram-negative, rod-shaped, chemoheterotrophic, strictly aerobic bacteria. They possess ubiquinone 10 as their major respiratory quinone, contain glycosphingolipids (GSLs), specifically ceramide, instead of lipopolysaccharide (LPS) in their cell envelopes, and typically produce yellow-pigmented colonies. The GSL serves to protect the bacteria from antibacterial substances. Unlike most Gram-negative bacteria, Sphingomonas carries endotoxins and has a hydrophobic surface characterized by the short nature of the GSL's carbohydrate portion[1].

By 2001, the genus included more than 20 species that were quite diverse in terms of their phylogenetic, ecological, and physiological properties. As a result, Sphingomonas was subdivided into different genera: Sphingomonas, Sphingobium, Novosphingobium, Sphingosinicella, and Sphingopyxis. These genera are commonly referred to collectively as sphingomonads. Distinct from other sphingomonads, Sphingomonas genomic structure includes unique lipid formation, major 2-OH fatty acids, homospermidine as the primary polyamine, and signature nucleotide bases within the 16S rRNA gene[1]. The bacteria holds 3914 proteins, 70 organizational RNA, and 3,948,000 base pairs (incomplete)[1].

Article body[edit]

Habitat[edit]

The sphingomonads are widely distributed in nature, having been isolated from many different land and water habitats (freshwater and seawater), as well as from plant root systems, clinical specimens, and other sources; this is due to their ability to survive in low concentrations of nutrients, as well as to metabolize a wide variety of carbon sources. Numerous strains have been isolated from environments contaminated with toxic compounds, where they display the ability to use the contaminants as nutrients.

Wine Fermentation[edit]

Wine, developed through the alcoholic fermentation of grapes, is an alcoholic beverage that is sensorially characterized by micro-bacteria and a host of other environmental factors. While historic variables such as location, temperature, soil quality, and winemaking practices play a role in altering the taste of a wine, microbial biogeography plays a significant role in the quality of wine. A terroir, comprising the aforementioned characteristics, influences the quality of the wine grapes based on the unique vineyard region that it originates from[2]. The bacterial diversity of the grapes anticipates a wine’s chemical structure. The management of these microbial factors, within the fermentation process, allows producers to control the prevalence of desirable regional attributes.


While most microbiota cannot survive the wine fermentation process, Sphingomonas, found in soil, grape leaves, and on fermentation surfaces, can survive this process. The pigmentation, stress resistance levels, unique restorative DNA system, and low nutrient necessity allows further growth in the phyllosphere[3]. As the grape matures, the microbial count increases due to nutrient availability and expansion of its surface area[2]. Researchers at the University of California, Davis observed an increase in abundance of the Sphingomonas bacteria from finished wines cultivated within Napa and Sonoma Counties, California[4]. This indicates that Sphingomonas is a biomarker for the chemical composition of wine. Sphingomonas is found throughout the wine fermentation process indicating a relationship between the bacteria and microbial terroir of the wines[5][6][7].

References:[edit]

  1. ^ a b c "Sphingomonas - microbewiki". microbewiki.kenyon.edu. Retrieved 2021-11-12.
  2. ^ a b Liu, Di; Zhang, Pangzhen; Chen, Deli; Howell, Kate (2019). "From the Vineyard to the Winery: How Microbial Ecology Drives Regional Distinctiveness of Wine". Frontiers in Microbiology. 10: 2679. doi:10.3389/fmicb.2019.02679. ISSN 1664-302X.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ Cureau, Natacha (May 2020). "Phylogenetic Diversity of Arkansas Vineyard and Wine Microbiota". ScholarWorks@UARK: 297.
  4. ^ "Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics". journals.asm.org. doi:10.1128/mbio.00631-16. PMC 4959672. PMID 27302757. Retrieved 2021-11-11.{{cite web}}: CS1 maint: PMC format (link)
  5. ^ Anagnostopoulos, Dimitrios A.; Kamilari, Elena; Tsaltas, Dimitris (2019-07-01), Contribution of the Microbiome as a Tool for Estimating Wine's Fermentation Output and Authentication, retrieved 2021-11-10
  6. ^ Bokulich, Nicholas A.; Collins, Thomas S.; Masarweh, Chad; Allen, Greg; Heymann, Hildegarde; Ebeler, Susan E.; Mills, David A. (2016-06-14). "Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics". mBio. 7 (3): e00631–16. doi:10.1128/mBio.00631-16. ISSN 2150-7511. PMC 4959672. PMID 27302757.
  7. ^ Wang, Hung Li; Hopfer, Helene; Cockburn, Darrell W.; Wee, Josephine (2021-01-11). "Characterization of Microbial Dynamics and Volatile Metabolome Changes During Fermentation of Chambourcin Hybrid Grapes From Two Pennsylvania Regions". Frontiers in Microbiology. 11: 614278. doi:10.3389/fmicb.2020.614278. ISSN 1664-302X. PMC 7829364. PMID 33505380.{{cite journal}}: CS1 maint: unflagged free DOI (link)