User:Phxntxsos/Bipedalism

From Wikipedia, the free encyclopedia

rough draft (feb 10):

Bold and italicized: my edit

Evolution of human bipedalism[edit][edit]

The form and function of modern-day humans' upper bodies appear to have evolved from living in a more forested setting. Living in this kind of environment would have made it so that being able to travel arboreally would have been advantageous at the time. It has also been proposed that, like some modern-day apes, early hominins had undergone a knuckle-walking stage prior to adapting the back limbs for bipedality while retaining forearms capable of grasping.[1] Numerous causes for the evolution of human bipedalism involve freeing the hands for carrying and using tools, sexual dimorphism in provisioning, changes in climate and environment (from jungle to savanna) that favored a more elevated eye-position, and to reduce the amount of skin exposed to the tropical sun.[41]

Consequences[edit]

Prehistoric fossil records show that early hominins first developed bipedalism before being followed by an increase in brain size.[83] The consequences of these two changes in particular resulted in painful and difficult labor due to the increased favor of a narrow pelvis for bipedalism being countered by larger heads passing through the constricted birth canal. This phenomenon is commonly known as the obstetrical dilemma.

Non-human primates habitually deliver their young on their own, but the same cannot be said for modern-day humans. Isolated birth appears to be rare and actively avoided cross-culturally, even if birthing methods may differ between said cultures. This is due to the fact that the narrowing of the hips and the change in the pelvic angle caused a discrepancy in the ratio of the size of the head to the birth canal. The result of this is that there is greater difficulty in birthing for hominins in general, let alone to be doing it by oneself.[2]

Walking[edit][edit]

profile view of the human spine

Unlike non-human apes that are able to practice bipedality such as Pan and Gorilla, hominins have the ability to move bipedally without the utilization of a bent-hip-bent-knee (BHBK) gait, which requires the engagement of both the hip and the knee joints. This human ability to walk is made possible by the spinal curvature humans have that non-human apes do not.[3] Rather, walking is characterized by an "inverted pendulum" movement in which the center of gravity vaults over a stiff leg with each step. Force plates can be used to quantify the whole-body kinetic & potential energy, with walking displaying an out-of-phase relationship indicating exchange between the two. This model applies to all walking organisms regardless of the number of legs, and thus bipedal locomotion does not differ in terms of whole-body kinetics.

Respiration[edit][edit]

the human respiratory system, encased by the rib cage

Quadrupeds, unlike bipeds, cannot respire while moving. This is due to the fact that the impact of propelling themselves fall on their forelimbs. The closeness of the chest to the points of impact means that their organs would hit one another, which is not sustainable for running. Thus, they are only able to run in short bursts before having to rest. Humans, on the other, do not have that limitation. Due to the use of bipedality for locomotion, the impact of running or walking does not travel far enough to jar the organs in the chest cavity.[4] A biped has the ability to breathe while running, without strong coupling to stride cycle. Humans usually take a breath every other stride when their aerobic system is functioning. During a sprint the anaerobic system kicks in and breathing slows until the anaerobic system can no longer sustain a sprint.

Respiration through bipedality means that there is better breath control in bipeds, which can be associated with brain growth. The modern brain utilizes approximately 20% of energy input gained through breathing and eating, as opposed to species like chimpanzees who use up twice as much energy as humans for the same amount of movement. This excess energy, leading to brain growth, also leads to the development of verbal communication. This is because breath control means that the muscles associated with breathing can be manipulated into creating sounds. This means that the onset of bipedality, leading to more efficient breathing, is the source of verbal language.[4]


rough draft (feb 21)

Lead:[edit]

I will be adding more information to the pre-existing sections in order to flesh out the article better. The sections I will be adding onto are the overview of "Evolution of Human Bipedalism," and the more specialized subsections "Consequences," "Walking," "Respiration," "Running," and "Musculature".[edit]

Running[edit][edit]

a group of people racing

Early hominins underwent post-cranial changes in order to better adapt to bipedality, especially running. One of these changes is having longer hindlimbs proportional to the forelimbs and their effects. As previously mentioned, longer hindlimbs assist in thermoregulation by reducing the total surface area exposed to direct sunlight while simultaneously allowing for more space for cooling winds. Additionally, having longer limbs is more energy-efficient, since longer limbs mean that overall muscle strain is lessened. Better energy efficiency, in turn, means higher endurance, particularly when running long distances.[5]

Running is characterized by a spring-mass movement. Kinetic and potential energy are in phase, and the energy is stored & released from a spring-like limb during foot contact, achieved by the plantar arch and the Achilles tendon in the foot and leg, respectively.[5] Again, the whole-body kinetics are similar to animals with more limbs.

Musculature[edit][edit]

Bipedalism requires strong leg muscles, particularly in the thighs. Contrast in domesticated poultry the well muscled legs, against the small and bony wings. Likewise in humans, the quadriceps and hamstring muscles of the thigh are both so crucial to bipedal activities that each alone is much larger than the well-developed biceps of the arms. In addition to the leg muscles, the increased size of the gluteus maximus in humans is an important adaptation as it provides support and stability to the trunk and lessens the amount of stress on the joints when running.[5]

References[edit]

  1. ^ Thorpe, S. K. S.; Holder, R. L.; Crompton, R. H. (2007). "Origin of Human Bipedalism as an Adaptation for Locomotion on Flexible Branches". Science. 316 (5829): 1328–1331. ISSN 0036-8075.
  2. ^ Trevathan, Wenda R. (1996). "The Evolution of Bipedalism and Assisted Birth". Medical Anthropology Quarterly. 10 (2): 287–290. ISSN 0745-5194.
  3. ^ Lovejoy, C. Owen; McCollum, Melanie A. (2010). "Spinopelvic pathways to bipedality: why no hominids ever relied on a bent-hip-bent-knee gait". Philosophical Transactions: Biological Sciences. 365 (1556): 3289–3299. ISSN 0962-8436.
  4. ^ a b DeSilva, Jeremy (2021). First Steps: How Upright Walking Made Us Human. New York: Harper Collins.
  5. ^ a b c Pontzer, Herman (2012). "Ecological Energetics in Early Homo". Current Anthropology. 53 (S6): S346–S358. doi:10.1086/667402. ISSN 0011-3204.