Subsea Internet of Things

From Wikipedia, the free encyclopedia
Subsea Internet of Things
IndustrySubsea Wireless Local Area Networks (WLAN)
Compatible hardwareLinear Networks, Sensors, Monitoring
Websitecsignum.com

Subsea Internet of Things (SIoT)[1][2] is a network of smart, wireless sensors and smart devices configured to provide actionable operational intelligence such as performance, condition and diagnostic information. It is coined from the term The Internet of Things (IoT).[3][4] Unlike IoT, SIoT focuses on subsea communication through the water and the water-air boundary. SIoT systems are based around smart, wireless devices incorporating Seatooth radio and Seatooth Hybrid technologies.[5][6] SIoT systems incorporate standard sensors including temperature, pressure, flow, vibration, corrosion and video.[7] Processed information is shared among nearby wireless sensor nodes.[8][9] SIoT systems are used for environmental monitoring, oil & gas production control and optimisation and subsea asset integrity management.[10][11][12] Some features of IoT's share similar characteristics to cloud computing.[13] There is also a recent increase of interest looking at the integration of IoT and cloud computing.[14] Subsea cloud computing is an architecture design to provide an efficient means of SIoT systems to manage large data sets. It is an adaption of cloud computing frameworks to meet the needs of the underwater environment. Similarly to fog computing or edge computing, critical focus remains at the edge.[15][16] Algorithms are used to interrogate the data set for information which is used to optimise production.[12][15][16]

Also known as Underwater-Internet of Things (U-IoT) or Underwater Wireless Sensor Network (UWSN), SIoT can be implemented for marine life monitoring and overfishing problems to support some aspects of Fourth Industrial Revolution. [17]

References[edit]

  1. ^ "'Subsea Internet of Things' to Transform Amount of Information Available". www.hydro-international.com. Retrieved 2017-05-25.
  2. ^ "Internet of Underwater Things: the next big wave?". Technologist. 2014-10-20. Retrieved 2017-05-25.
  3. ^ Raza, Shahid; Misra, Prasant; He, Zhitao; Voigt, Thiemo (Spring 2017). "Building the Internet of Things with Bluetooth smart". Ad Hoc Networks. 57: 19–31. doi:10.1016/j.adhoc.2016.08.012.
  4. ^ Gubbi, Jayavardhana; Buyya, Rajkumar; Marusic, Slaven; Palaniswami, Marimuthu (2013). "Internet of Things (IoT): A vision, architectural elements, and future directions". Future Generation Computer Systems. 29 (7): 1645–1660. arXiv:1207.0203. doi:10.1016/j.future.2013.01.010. S2CID 204982032.
  5. ^ Bridgwater, Adrian (2017-05-26). "What is the Subsea Internet of Things (SIoT)? - Internet of Business". Internet of Business. Retrieved 2017-06-13.
  6. ^ "'Subsea Internet of Things' to Transform Amount of Information Available". www.hydro-international.com. Retrieved 2017-06-13.
  7. ^ "Digital Energy Journal- Developments in subsea digital technology". www.digitalenergyjournal.com. Retrieved 2017-06-13.
  8. ^ Magagni, L.; Sergio, M.; Nicolini, M.; Gennaretti, D.; Canegallo, R.; Guerrieri, R. (2005). "A smart node architecture for underwater monitoring of sensor networks". Sensors and Actuators A: Physical. 130: 290–296. doi:10.1016/j.sna.2005.09.028.
  9. ^ Yuan, Dingwen; Kanhere, Salil; Hollick, Matthias (Winter 2016). "Instrumenting Wireless Sensor Networks - A survey on the metrics that matter". Pervasive and Mobile Computing. 37: 45–62. doi:10.1016/j.pmcj.2016.10.001.
  10. ^ Collins, Amanda (2013). "Applications of Subsea Wireless Technology to Environmental Monitoring". 2013 OCEANS - San Diego. pp. 1–5. doi:10.23919/OCEANS.2013.6741255 (inactive 31 January 2024).{{cite book}}: CS1 maint: DOI inactive as of January 2024 (link)
  11. ^ Chiu, Min-Chie; Karkoub, Mansour; Her, Ming-Guo (2017). "Energy harvesting devices for subsea sensors". Renewable Energy. 101: 1334–1347. doi:10.1016/j.renene.2016.10.018.
  12. ^ a b John, Mulholland; Daniel, McStay (2011). "Wireless communication enhances subsea production monitoring". Offshore: 71–76.
  13. ^ Stergiou, Christos; Psannis, Kostas; Kim, Byung-Gyu; Gupta, Brij (Winter 2016). "Secure integration of IoT and Cloud Computing". Future Generation Computer Systems. 78: 964–975. doi:10.1016/j.future.2016.11.031.
  14. ^ Cavalcante, Everton; Pereira, Jorge; Alves, Marcelo Pitanga; Maia, Pedro; Moura, Roniceli; Batista, Thais; Delicato, Flavia C.; Pires, Paulo F. (2016). "On the interplay of Internet of Things and Cloud Computing: A systematic mapping study". Computer Communications. 89–90: 17–33. doi:10.1016/j.comcom.2016.03.012.
  15. ^ a b Bonomi, Flavio; Milito, Rodolfo; Zhu, Jiang; Addepalli, Sateesh (Spring 2004). "Fog Computing and Its Role in the Internet of Things". Proceedings of the first edition of the MCC workshop on Mobile cloud computing. pp. 13–16. doi:10.1145/2342509.2342513. ISBN 9781450315197. S2CID 207196503.
  16. ^ a b Lopez, Pedro Garcia; Datta, Anwitaman; Barcellos, Marinho; Montresor, Alberto; Higashino, Teruo; Felber, Pascal; Epema, Dick; Lamnitchi, Adriana; Riviere, Etienne (2015). "Edge-centric Computing: Vision and Challenges". ACM SIGCOMM Computer Communication Review. 45 (5): 37–42. doi:10.1145/2831347.2831354. hdl:11572/114780.
  17. ^ "Designing of an Underwater-Internet of Things (U-IoT) for Marine Life Monitoring; Asif Sazzad, Nazifa Nawer, Maisha Mahbub Rimi, K. Habibul Kabir & Khandaker Foysal Haque; Retrieved on 7 October 2023". 3 June 2023. doi:10.1007/978-981-19-8032-9_21.